首页> 外文OA文献 >Multimodal Probabilistic Model-Based Planning for Human-Robot Interaction
【2h】

Multimodal Probabilistic Model-Based Planning for Human-Robot Interaction

机译:基于多模态概率模型的人机器人规划   相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a method for constructing human-robot interactionpolicies in settings where multimodality, i.e., the possibility of multiplehighly distinct futures, plays a critical role in decision making. We aremotivated in this work by the example of traffic weaving, e.g., at highwayon-ramps/off-ramps, where entering and exiting cars must swap lanes in a shortdistance---a challenging negotiation even for experienced drivers due to theinherent multimodal uncertainty of who will pass whom. Our approach is to learnmultimodal probability distributions over future human actions from a datasetof human-human exemplars and perform real-time robot policy construction in theresulting environment model through massively parallel sampling of humanresponses to candidate robot action sequences. Direct learning of thesedistributions is made possible by recent advances in the theory of conditionalvariational autoencoders (CVAEs), whereby we learn action distributionssimultaneously conditioned on the present interaction history, as well ascandidate future robot actions in order to take into account response dynamics.We demonstrate the efficacy of this approach with a human-in-the-loopsimulation of a traffic weaving scenario.
机译:本文提出了一种在多模式(即多个高度不同的未来的可能性在决策中起关键作用)的环境中构建人机交互策略的方法。我们以交通编织为例来进行这项工作,例如在高速公路上的匝道/下坡道,进出的汽车必须在短距离内交换车道-即使是经验丰富的驾驶员,由于存在固有的多式联运不确定性,这也是一个具有挑战性的谈判谁将通过谁。我们的方法是从人与人样本的数据集中了解未来人类行为的多峰概率分布,并通过对候选机器人动作序列的人类响应进行大规模并行采样,在结果环境模型中执行实时机器人策略构建。条件分布自动编码器(CVAE)理论的最新进展使得直接学习这些分布成为可能,从而我们可以根据当前交互历史同时学习动作分布,并考虑未来的机器人动作以考虑响应动态。这种方法的有效性以及交通编织场景的在环仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号